光電器件是在微電子技術基礎上發(fā)展起來的一種實現光與電之間相互轉換的器件,其**是各種光電材料,即能夠實現光電信息的接收、傳輸、轉換、監(jiān)測、存儲、調制、處理和顯示等功能的材料。光電傳感器件指的是能夠對某種特征量進行感知或探測的光電器件,狹義上*指可將特征光信號轉換為電信號進行探測的器件,廣義而言,任何可將被測對象的特征轉換為相應光信號的變化、并將光信號轉換為電信號進行檢測、探測的器件都可稱之為光電傳感器。當超過某上限后氧化石墨烯量子點的性質相當接近氧化石墨烯。氧化石墨漿料
與石墨烯量子點類似,氧化石墨烯量子點也具備一些特殊的性質。當GO片徑達到若干納米量級的時候將會出現明顯的限域效應,其光學性質會隨著片徑尺寸大小發(fā)生變化[48],當超過某上限后氧化石墨烯量子點的性質相當接近氧化石墨烯,這就提供了一種通過控制片徑尺寸分布改變氧化石墨烯量子點光響應的手段。與GO類似,這種pH依賴來源于自由型zigzag邊緣的質子化或者去質子化。同樣,這也可以解釋以GO為前驅體通過超聲-水熱法得到的石墨烯量子點的光發(fā)射性能,在藍光區(qū)域其光發(fā)射性能取決于zigzag邊緣狀態(tài),而綠色的熒光發(fā)射則來自于能級陷阱的無序狀態(tài)。通過控制氧化石墨烯量子點的氧化程度,可以控制其發(fā)光的波長。這一類量子點的光學性質類似于GO,這說明只要片徑小于量子點,都會產生同樣的光學效應,也就是在結構上存在一個限域島狀SP2雜化的碳或者含氧基團在功能化過程中引入的缺陷狀態(tài)。氧化石墨漿料靜電作用的強弱與氧化石墨烯表面官能團產生的負電荷相關。
氧化石墨烯(GO)的光學性質與石墨烯有著很大差別。石墨烯是零帶隙半導體,在可見光范圍內的光吸收系數近乎常數(~2.3%);相比之下,氧化石墨烯的光吸收系數要小一個數量級(~0.3%)[9][10]。而且,氧化石墨烯的光吸收系數是波長的函數,其吸收曲線峰值在可見光與紫外光交界附近,隨著波長向近紅外一端移動,吸收系數逐漸下降。對紫外光的吸收(200-320nm)會表現出明顯的π-π*和 n-π*躍遷,而且其強度會隨著含氧基團的出現而增加[11]。氧化石墨烯(GO)的光響應對其含氧基團的數量十分敏感[12]。隨著含氧基團的去除,氧化石墨烯(GO)在可見光波段的的光吸收率迅速上升,**終達到2.3%這一石墨烯吸收率的上限。
氧化石墨烯表面的-OH和-COOH等官能團含有孤對電子,可作為配位體與具有空的價電子軌道的金屬離子發(fā)生絡合反應,生成不溶于水的絡合物,從而有效去除溶液中的金屬離子。Madadrang等45制得乙二胺四乙酸/氧化石墨烯復合材料(EDTA-GO),通過研究發(fā)現其對金屬離子的吸附機制主要為絡合反應,即氧化石墨烯的表面官能團與水中的金屬離子反應形成復雜的絡合物,具體過程如圖8.7所示,由于形成的絡合物不溶于水,可通過沉淀等作用分離去除水中的金屬離子。將氧化石墨暴露在強脈沖光線下,例如氙氣燈也能得到石墨烯。
使得*在單層中排列的水蒸氣可以滲透通過納米通道。通過在GO納米片之間夾入適當尺寸的間隔物來調節(jié)GO間距,可以制造廣譜的GO膜,每個膜能夠精確地分離特定尺寸范圍內的目標離子和分子。水合作用力使得溶液中氧化石墨烯片層間隙的距離增大到1.3 nm,真正有效、可自由通過的孔道尺寸為0.9 nm,計算出水合半徑小于0.45 nm的物質可以通過氧化石墨烯膜片,而水合半徑大于0.45 nm的物質被截留,如圖8.4所示。例如,脫鹽要求GO的層間距小于0.7 nm,以從水中篩分水合Na +(水合半徑為0.36nm)。 通過部分還原GO以減小水合官能團的尺寸或通過將堆疊的GO納米片與小尺寸分子共價鍵合以克服水合力,可以獲得這種小間距。與此相反,如果要擴大GO的層間距至1~2 nm,可在GO納米片之間插入剛性較大的化學基團或聚合物鏈(例如聚電解質),從而使GO膜成為水凈化、廢水回收、制藥和燃料分離等應用的理想選擇。 如果使用更大尺寸的納米顆?;蚣{米纖維作為插層物,可以制備出間距超過2nm的GO膜,以用于生物醫(yī)學應用(例如人工腎和透析),這些應用需要大面積預分離生物分子和小廢物分子。調控反應過程中氧化條件,減少面內大面積反應,減少缺陷,提升還原效率。常州開發(fā)氧化石墨
石墨烯在可見光范圍內的光吸收系數近乎常數。氧化石墨漿料
氧化石墨烯同時具有熒光發(fā)射和熒光淬滅特性,廣義而言,其自身已經可以作為一種傳感材料,在生物、醫(yī)學領域的應用充分說明了這一點。經過功能化的氧化石墨烯/還原氧化石墨烯在更加的領域內得到了應用,特別在光探測、光學成像、新型光源、非線性器件等光電傳感相關領域有著豐富的應用。光電探測器是石墨烯問世后**早應用的領域之一。2009 年, Xia 等利用機械剝離的石墨烯制備出了個石墨烯光電探測器(MGPD)[2],如圖9.6,以1-3 層石墨烯作為有源層,Ti/Pd/Au 作源漏電極,Si 作為背柵極并在其上沉淀300nm 厚的SiO2,在電極和石墨烯的接觸面上因為功函數的不同,能帶會發(fā)生彎曲并產生內建電場。氧化石墨漿料